Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 168: 637-649, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37517618

RESUMO

Zn-Li-based alloys have drawn great attention as promising candidates for load-bearing sites, such as intramedullary nails and bone plates. They possess high monotonic strength (over 500MPa) and better pitting resistance with lithium-rich layers acting as barriers for corrosion attack under (quasi-)static conditions. However, their response to dynamic loadings such as fatigue is still unknown. Herein, the corrosion fatigue behavior of a series of Zn-Li binary alloys with different lithium addition amounts was tested in simulated body fluid. Tensile and fatigue strength of the materials were proportional to lithium content while corrosion fatigue strength was not. Extremely long cracks that extended parallel to the loading direction were found in Zn-1.0wt.%Li alloys. These cracks propagated by selective dissolution of the lithium-rich phase in the eutectoid regions and drastically reduced the corrosion fatigue strength of Zn-1.0wt.%Li alloy owing to exacerbated crack propagation. To sum up, Zn-Li binary alloys showed fatigue strength comparable to pure iron and pure titanium, which confirmed their loading capacity under dynamic conditions. STATEMENT OF SIGNIFICANCE: Zn-Li-based alloys are qualified as biodegradable metals and are dedicated to load-bearing applications. Current research has shown that lithium can suppress pitting corrosion by the formation of lithium-rich layers on the alloy surface during (quasi-)static conditions. However, how these materials respond to dynamic loading is still unknown. The present study investigated the influence of lithium amount (0.1∼1.0wt.%) on the corrosion fatigue behavior of binary Zn-Li alloys. The results showed that lithium effectively improved the mechanical strength but can harm corrosion fatigue strength at high content due to selective dissolution of lithium-rich phase. This demonstrated that the amount of lithium should be controlled for optimal properties. Zn-0.8wt.%Li alloy demonstrated a good combination of tensile and corrosion fatigue strength, which can be further improved by proper alloying and thermomechanical treatment.


Assuntos
Ligas , Líquidos Corporais , Lítio , Teste de Materiais , Zinco , Corrosão , Placas Ósseas , Implantes Absorvíveis , Materiais Biocompatíveis
2.
Sci Rep ; 11(1): 4750, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637794

RESUMO

Meteoric iron is the metal that humans first obtained and used in the earliest stage of metal culture. Advances in metallographic analysis techniques have revealed that meteoric iron largely comprises kamacite, taenite, and cohenite, which correspond to ferrite, austenite, and cementite in artificial steel, respectively. Although the mechanical properties of meteoric irons were measured previously to understand their origin and history, the genuine mechanical properties of meteoric iron remain unknown because of its complex microstructure and the pre-existing cracks in cohenite. Using micro-tensile tests to analyse the single-crystalline constituents of the Canyon Diablo meteorite, herein, we show that the taenite matrix exhibits excellent balance between yield strength and ductility superior to that of the kamacite matrix. We found that taenite is rich in nitrogen despite containing a large amount of nickel, which decreases the nitrogen solubility, suggesting that solid-solution strengthening via nitrogen is highly effective for the Fe-Ni system. Our findings not only provide insights for developing advanced high-strength steel but also help understand the mysterious relationship between nitrogen and nickel contents in steel. Like ancient peoples believed that meteoric iron was a gift from the heavens, the findings herein imply that this thought continues even now.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...